Electronic Grade

Diamond Semiconductors Reborn: Precision-Doped for Extreme Electronics

From Ultra-Wide Bandgap FETs to Quantum Electrodes – Engineered Atom-by-Atom

Core Value Proposition

We pioneer electronic-grade diamond with atomically controlled doping (Boron/Phosphorus), buried heterostructures, and epitaxial integration – unlocking diamond’s 10,000× higher electron mobility than SiC for revolutionary power devices.

Doping Capabilities Overview

Parameter Boron (p-type) Phosphorus (n-type)
Doping Range 10¹⁶ → 10²⁰ atoms/cm³ 10¹⁶ → 10¹⁹ atoms/cm³
Conductivity 10⁻³ → 10³ S/cm 10⁻⁵ → 10² S/cm
Critical Formats ◇ Freestanding substrates ◇ Epitaxial layers ◇ Buried interlayers ◇ Delta-doped channels ◇ Ohmic contact layers

Breakthrough Product Lines

Boron-Diamond Power Substrates

  • Ultra-High Power FETs: 10²⁰/cm³ substrates for 20 kV blocking voltage
  • Low-Loss Electrodes: >3000 S/cm conductivity (replaces Pt in electrolysis)
  • Quantum Sensors: 10¹⁶/cm³ “quiet zones” for NV⁻ coherence

Doped Heterostructures

Multi-layer stacks with 10 nm resolution:

  • Insulating/P-Type/Insulating sandwiches for JFETs
  • Buried Boron Channels (10¹⁹/cm³) in intrinsic diamond
  • N-P-N Quantum Wells for diamond transistors

Phosphorus-Diamond Epitaxy

The n-type holy grail – now manufacturable:

  • Electron mobility >600 cm²/V·s at 300K
  • UV photodetectors with 200-225 nm cutoff
  • Diamond CMOS integration kits

Are you interested in Electronic Grade?

Why Diamond Electronics?

Property Diamond vs. SiC/GaN Our Advantage
Breakdown Field 10 MV/cm (3× GaN) Enables 30kV+ devices
Thermal Conduct 2200 W/mK (5× SiC) No derating at 500°C
Carrier Mobility 4500 cm²/V·s (10× Si) GHz switching in mm² chips
Johnson’s Figure Highest of any material 100× power handling vs. Si

Targeted Applications

Next-Gen Power Electronics

10 kV+ diamond Schottky diodes (10¹⁷/cm³ drift layers)

  • 50 kW RF amplifiers with boron-doped heat spreaders
  • Fusion reactor diagnostics (radiation-hard sensors)”

Quantum Electrode Systems

Boron-doped nanowire electrodes for neural interfaces

  • NV⁻-to-dopant coupled qubits (10¹⁹/cm³ interlayers)
  • Electrochemical NMR diamonds with P-doped contacts

Extreme Environment Sensors

Jet engine T-sensors (600°C operation)

  • Deep-earth geophysical probes
  • Venus lander electronics (500°C, 90 atm)

Technical Specifications

Feature Specification Certification Method
Doping Accuracy ±5% across 50 mm wafer SIMS depth profiling
Layer Thickness Control ±10 nm (buried interlayers) TEM cross-section
Mobility @ 300K Holes: 2000 cm²/V·s Electrons: 600 cm²/V·s Hall measurement
Surface Roughness <1 nm Ra (epitaxy-ready) AFM 50×50 μm scan
Wafer Size 20×20 mm → 30×30 mm Laser interferometry

Manufacturing Excellence

 MPCVD Process: Gas-phase doping with real-time optical monitoring

  • Buried Layer Tech: Stoichiometric interfaces with <0.1% cross-contamination
  • Industrial Scale: Batch production of 10+ wafers/month (20×20 mm)

Why Competitors Can’t Match This

While others struggle with diamond doping, we deliver:

  • 10²⁰/cm³ Boron: Highest p-type conductivity commercially available
  • Stable n-type: Phosphorus doping without compensatory nitrogen
  • True 3D Integration: Pure/doped layer stacks – not just surface doping

Frequently Asked Questions (FAQs)

Why is diamond better than silicon for power electronics?

Diamond can handle 10,000× higher voltages and 5× more heat than silicon. It lets electrons move faster, making devices smaller, more efficient, and able to work in extreme conditions (like 500°C or space).

Yes! We precisely add boron (p-type) and phosphorus (n-type) to diamond:

  • Boron doping creates ultra-powerful switches (up to 20,000V).

  • Phosphorus doping (a breakthrough) enables diamond CMOS chips.

We offer 20×20 mm to 30×30 mm wafers with:

  • ±5% doping accuracy (checked by lab tests).

  • <1 nm surface smoothness (ready for chip-making).

  • Multi-layer designs (like boron channels inside pure diamond).

  • Power grids: 10,000V+ switches with near-zero energy loss.

  • Quantum tech: Sensors and qubits using doped diamond layers.

  • Space/aviation: Electronics that survive Venus-like heat and radiation.

We provide:

  • Band structure simulations (to predict performance).

  • Sample wafers with doping reports.

  • Integration kits for engineers.

Design Your Diamond Semiconductor

Submit doping profiles for a band structure simulation or request our Diamond Device Integration Kit for process engineers.